

LASER-INDUCED DAMAGE THRESHOLD (LIDT) MEASUREMENT REPORT

LIDT ISO S-ON-1 TEST PROCEDURE

SAMPLE: CAM364-B1-5

Request fron	n
--------------	---

Address Optoman

Ukmergės pl. 427 LT-14183 Vilnius

Lithuania

Contact person Vaida Grašytė Inquiry date 2025-10-03 Purchase order PO13301

Testing institute

Address UAB Lidaris

Saulėtekio al. 10 LT-10223 Vilnius

Lithuania

Tester Dovilé Pamedytyté

Test date 2025-10-09
Sale order SO06310
Test ID KGPBVP

Specimen

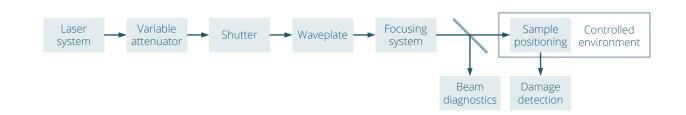
Name CAM364-B1-5

Front surface (S1) AR Coating (AR@1064)

Rear surface (S2)

Dimensions

Ø25.4 x 6.4 mm


Packaging

Plastic box

TEST EQUIPMENT

Test setup

Laser and its parameters

Type Q-switched, seeded Nd:YAG (IL)

Manufacturer InnoLas Laser II
Model SpitLight Hybrid

Central wavelength 1064.0 nm

Angle of incidence 0.0 Deg
Polarization state Linear (AoI = 0)

Pulse repetition frequency 100 Hz

Spatial beam profile in target plane Near Gaussian Beam diameter in target plane (1/e²) (218.3 \pm 1.4) μ m

Longitudinal pulse profile Single longitudinal mode

Pulse duration (FWHM) (10.2 \pm 0.3) ns

Pulse to pulse energy stability (SD) 1.3 %

Energy/power meter

Manufacturer Ophir
Model PE50-DIF-C
Calibration due date 2025-10-31

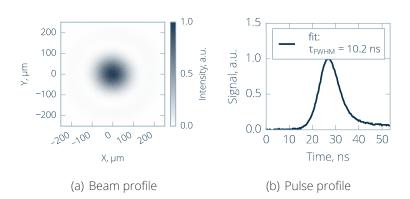


Figure 1. Laser parameters used for measurements.

KGPBVP – CAM364-B1-5 Page 2 / 1

TEST SPECIFICATION

Definitions and test description

Laser-induced damage (LID) is defined as any permanent laser radiation induced change in the characteristics of the surface/bulk of the specimen which can be observed by an inspection technique and at a sensitivity related to the intended operation of the product concerned. Laser-induced damage threshold (LIDT) is defined as the highest quantity of laser radiation incident upon the optical component for which the extrapolated probability of damage is zero.

LID of the sample is investigated by performing a standardized S-on-1 test procedure.² LIDT value is determined by fitting experimental damage probability data with a model derived for a Poisson damage process assuming degenerate defect ensemble.³

Test sites	
Number of sites	410
Arrangement of sites	Hexagonal
Minimum distance between sites	0.9 mm
Maximum pulses per site	1000
Analysis information	
Online detection	Scattered light diode
Offline detection	Nomarski microscope
Software version	2e7b3c0b
Test environment	
Environment	Air
Cleanroom class (ISO 14644-1)	ISO 7
Pressure	1.00e+03 mbar
Temperature	22 C
Humidity	39 %
Sample preparation	
Storage before test	Normal laboratory conditions
Dust blow-off	None
Cleaning	None

¹ISO 21254-1:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 1: Definitions and general principles, International Organization for Standardization, Geneva, Switzerland (2011)

KGPBVP – CAM364-B1-5 Page 3 / 1′

²ISO 21254-2:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 2: Threshold determination, International Organization for Standardization, Geneva, Switzerland (2011)

³J. Porteus and S. Seitel, Absolute onset of optical surface damage using distributed defect ensembles, Applied Optics, 23(21), 3796–3805 (1984)

LIDT TEST RESULTS LIDT VALUE

1000-on-1 74^{+21}_{-43} J/cm²

CHARACTERISTIC DAMAGE CURVE

Table 1: Estimated LIDTs from fiting model for sample CAM364-B1-5.

Test mode	Threshold (Offline detection)	Threshold (Online detection)
1-on-1	74 ⁺³³ J/cm ²	79 ⁺³² J/cm ²
10-on-1	-	79 ⁺³¹ ₋₃₇ J/cm ²
100-on-1	-	79 ⁺²⁶ ₋₃₇ J/cm ²
1000-on-1	74 ⁺²¹ ₋₄₃ J/cm ²	79 ⁺²¹ ₋₃₇ J/cm ²

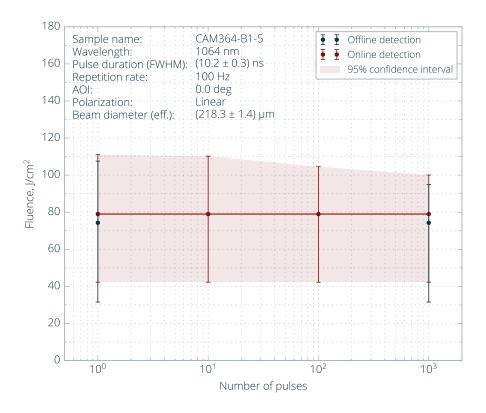


Figure 2. Characteristic damage curve.

KGPBVP – CAM364-B1-5 Page 4 / 1

DAMAGE PROBABILITY (OFFLINE DETECTION)

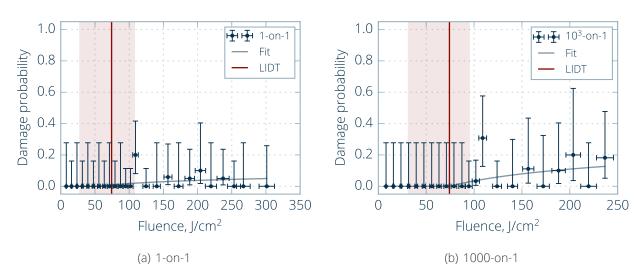


Figure 3. Damage probability plots.

KGPBVP – CAM364-B1-5 Page 5 / 1

TYPICAL DAMAGE MORPHOLOGY (OFFLINE DETECTION)



Figure 4. Typical damage morphology: fluence 158 J/cm², damage after 1 pulse(s).

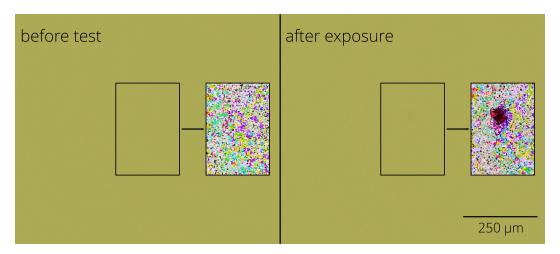


Figure 5. Typical damage morphology: fluence $102 \, \text{J/cm}^2$, damage after $1000 \, \text{pulse}(s)$. High contrast image.

KGPBVP – CAM364-B1-5 Page 6 / 1

DAMAGE PROBABILITY (ONLINE DETECTION)

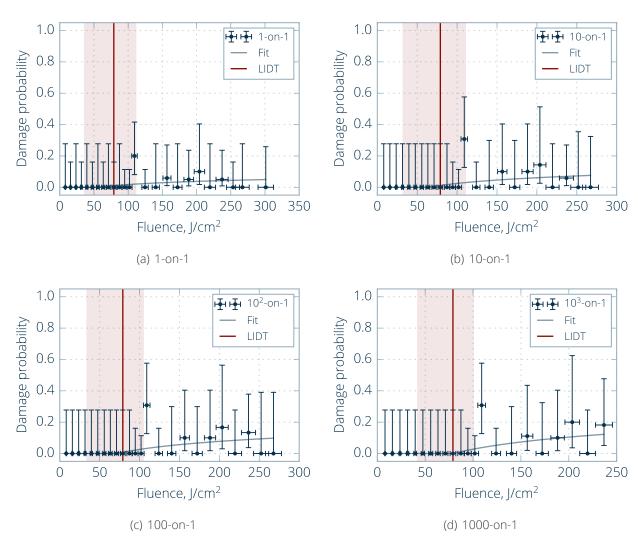


Figure 6. Damage probability plots.

KGPBVP – CAM364-B1-5 Page //1°

CUMULATIVE PROBABILITIES FITTED WITH LINEAR FIT MODEL

CUMULATIVE PROBABILITIES LIDT VALUE

1000-on-1 96.1 ^{+5.4}_{-6.2} J/cm²

CHARACTERISTIC DAMAGE CURVE

Table 2: Estimated LIDTs from cumulative probabilities using Linear fit model for sample CAM364-B1-5.

Test mode	Threshold (Offline detection)	Threshold (Online detection)
1-on-1	100.9 ^{+4.9} _{-8.9} J/cm ²	101.9 ^{+4.8} _{-9.0} J/cm ²
10-on-1	-	101.9 ^{+4.8} _{-9.0} J/cm ²
100-on-1	-	101.9 ^{+3.9} _{-9.3} J/cm ²
1000-on-1	96.1 ^{+5.4} _{-6.2} J/cm ²	101.8 ^{+3.6} _{-9.3} J/cm ²

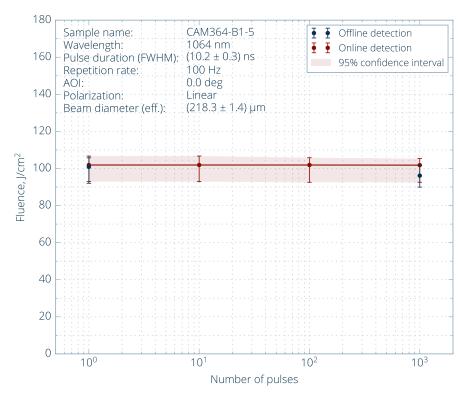


Figure 7. Characteristic damage curve for cumulative probabilities. ³

DAMAGE PROBABILITY (OFFLINE DETECTION)

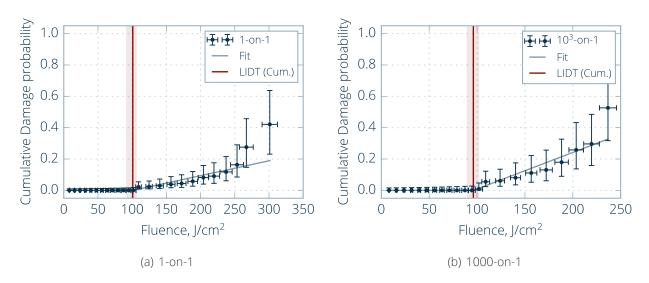


Figure 8. Cumulative damage probability plots.

KGPBVP – CAM364-B1-5 Page 9 / 1

DAMAGE PROBABILITY (ONLINE DETECTION)

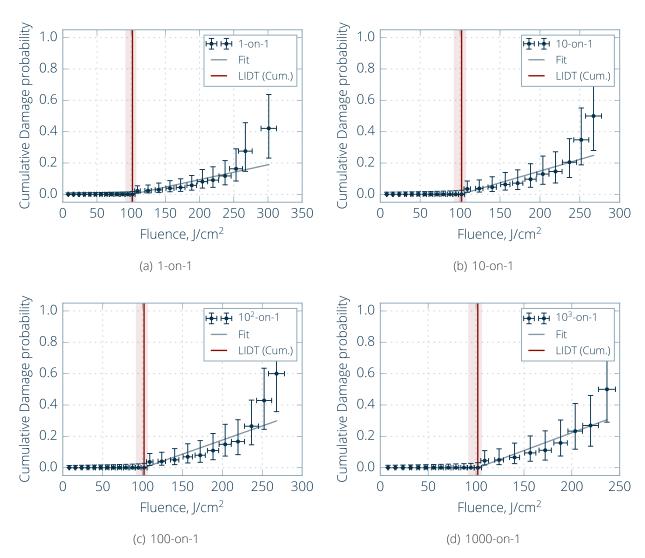


Figure 9. Cumulative damage probability plots.

KGPBVP – CAM364-B1-5 Page 10 / 1

TECHNICAL NOTES

TECHNICAL NOTE 1: LIDT estimation for cumulative probabilities

In a case when the sample experiences relatively small number of damages, we introduce supplementary LIDT estimation for cumulative reduced probability distribution. Cumulative data reduction is performed considered following assumptions⁴. An undamaged test site would have also survived when irradiated at lower fluence. A damaged test site would have also been damaged when irradiated at higher fluence. Positive damage probabilities in reduced data is fitted with Linear function using maximum likelihood estimation. This method was included in the report because error of the highest pulse class LIDT value exceeded 50%.

TECHNICAL NOTE 2: Rear surface damage

Rear surface damage was observed exposing with more than 140 J/cm² fluence laser radiation.